SA433 · Data Wrangling and Visualization

Exam 2 - Part 1 - 11/6/2024

Instructions

- This part is worth 20 points total. The exam (all three parts) is worth 100 points total.
- You have 50 minutes to complete Parts 1 and 2 of the exam.
- For Parts 1 and 2 of the exam, you may <u>not</u> use any outside assistance. These parts of the exam are closed book, closed notes, and closed internet.
- No collaboration allowed. All work must be your own.
- You must turn in Part 1 before beginning Part 2.
- Do not discuss the contents of this exam with any midshipmen until it is returned to you.

Background

This part is based on the DataFrame below, called track_df, which provides the time (in seconds) for six different athletes in two events (400 meter and 800 meter) over two track meets: "meet1" and "meet2":

	athlete	team	meet1_400	meet2_400	meet1_800	meet2_800
0	Fazio	Blue	60.7	59.1	135.6	132.0
1	Martell	Gray	62.2	62.6	139.5	133.2
2	Ohlsson	Blue	56.7	54.7	132.9	133.2
3	Tovcach	Blue	63.0	63.2	121.9	122.8
4	OConnell	Gray	61.6	58.5	135.0	133.4
5	Acosta	Gray	59.5	60.4	125.1	123.7

Assume the following code has already been run to import Pandas and read in the DataFrame:

import pandas as pd

track_df = pd.read_csv('data/track.csv')

Problem	Max	Score
1	5	
2	5	
3	5	
4	5	
Total		/ 20

The four problems below consist of writing lines of code in a single method chain that begins with track_df and creates a new DataFrame, blue_meet1_df, which focuses on the Blue team's performance in the 400 meter race in the first meet. The new DataFrame is displayed below the code for reference.

- 1. Filter the rows for athletes on the Blue team.
- 2. Change the name of column meet1_400 to 400m.
- 3. Sort the rows of the DataFrame according to the times in the 400m column so that the fastest time is first.
- 4. Pare down the columns so that only the three columns shown below remain (there are 2 ways to do this–either way is fine).

```
blue_meet1_df = (
    track_df
    .query('team == "Blue"')
                                                # Problem 1
    .rename(columns = {'meet1_400': '400m'})
                                                # Problem 2
    .sort_values('400m')
                                                # Problem 3
    [['athlete', 'team', '400m']]
                                                # Problem 4
)
or
blue_meet1_df = (
   track_df
    .query('team == "Blue"')
                                                              # Problem 1
    .rename(columns = {'meet1_400': '400m'})
                                                              # Problem 2
    .sort_values('400m')
                                                              # Problem 3
    .drop(columns = ['meet1_800', 'meet2_400', 'meet2_800']) # Problem 4
)
```